The Prototype All-Sky Imager (PASI)

Jake Hartman Greg Taylor

The Prototype All-Sky Imager (PASI)

- A backend to the LWA1's digital processor, to be located in the RFI shelter
- Receives the TBN data stream: continuous 100 kSPS data from all the dipoles
- Using a software FX correlator, PASI will image the entire sky (≈1.5 π sr) many times per minute to a few Jy
- This is a virtually unexplored region of transient phase space! (radio frequency, sky coverage, imaging cadence, uptime)

PASI hardware

An additional backend, to be located in the RFI shelter

- 4 × 8 × 2.93 GHz Nehalem cores
- Infiniband switch
- 10 GbE port(s)
- Provided by LANL

Plan to move the cluster to the shelter this summer

PasiFX software correlator and imager

Look-back time: 10–20 hr for raw data weeks for visibilities images kept forever

Recently began imaging

April 21 77 MHz, 80 kHz BW 30 s integration 175 stands Dirty image (quite!) Full Stokes Imaged using PasiFX and CASA in ~20 s

Recently began imaging

April 27 77 MHz, 80 kHz BW 30 s integration 175 stands

Sensitivity

- Confusion limit is 25 Jy/beam at 74 MHz, but this limit is dominated by constant sources
- Search strategies:
 - + Image differencing
 - + Comparison of point sources (as returned by CLEAN)
 - + Searching for polarization
- Noise limits for 74 MHz frequency, 80 kHz bandwidth
 - 10 s integration: 2 Jy/beam2 hr integration: 100 mJy/beam
- Few comparable studies: LWDA transient search (106 hr) had a noise level of 500 Jy/beam

Comparison with LOFAR monitoring

	LWA1 PASI	LOFAR RSM
technique	correlator	24 beams
integration	5 s	5 s
frequency	75 MHz	75 MHz
bandwidth	80 kHz	4 MHz
field size	16,000 deg ²	420 deg ²
resolution	2°	8'
sensitivity	5 Jy	0.1 Jy
RFI risk	lower	higher
		(Fender et al. 2006)

complementary approaches!

- Bright flares from Hot Jupiters
- Giant flares from magnetars
- Rotating radio transients (RRATs)
- Prompt GRB emission
- The unknown ...

- Bright flares from Hot Jupiters
- Giant flares from magnetars
- Rotating radio transients (RRATs)
- Prompt GRB emission
- The unknown ...

- Bright flares from Hot Jupiters
- Giant flares from magnetars
- Rotating radio transients (RRATs)
- Prompt GRB emission
- The unknown ...

Transients that are BRIGHT and RARE:

- Bright flares from Hot Jupiters
- Giant flares from magnetars
- Rotating radio transients (RRATs)
- Prompt GRB emission
- The unknown ...

Circularly polarized synchrotron maser emission from GRB shock LWA (Sagiv & Waxman 2002) 10^{-2} $v^{1/3}$ 10^{-4} I / max I v ν 10^{-6} 10^{-8} v_{R^*} / v 10⁻¹⁰ $10^{\bar{3}}$ 10^{2} 10^{1} 10^{4} 10v / vp (Typical plasma frequency: $v_p \sim 10^7$ Hz)

- Bright flares from Hot Jupiters
- Giant flares from magnetars
- Rotating radio transients (RRATs)
- Prompt GRB emission
- The unknown ...

- Bright flares from Hot Jupiters
- Giant flares from magnetars
- Rotating radio transients (RRATs)
- Prompt GRB emission
- The unknown ...

Summary

- Will open up a radically new region of transient phase space, imaging the entire sky at Jy level, many times per minute
- Will provide "look back" capabilities for GRB follow-up, etc.
- Ultimately will generate our own transient alerts
- Software development in progress; first animations of the sky expected soon!

