

Solar Radio Bursts with LWA-1

Stephen White

Space Vehicles Directorate Air Force Research Laboratory

10¹⁰ Jy in the GPS band:: "spike bursts"

TBN data

2011 Feb 13 2011 Feb 14

ISES Solar Cycle F10.7cm Radio Flux Progression Observed data through Apr 2011

Updated 2011 May 3

NOAA/SWPC Boulder,CO USA

GBSRBS 30 MHz light curve (2011-02-13)

The first big flare of the cycle rise

Bright Type III burst at 30 MHz

Low-level emission around Type III

Impulsive phase: type III-like burst

An "EIT" wave from Feb 14

(SDO/AIA)

Bursty Type II emission

C flare with multiple type III bursts

Low-level emission

Science with LWA-1 TBN data

- TBN data provide basically rapid sampling of the waveform at a fixed frequency
- Big push by the Sydney group (Cairns, Robinson, Li) to interpret low-frequency plasma emission with "stochastic growth theory" (SGT): electron beams are not uniformly saturated but are dominated by density fluctuations in the medium, results in marginally unstable beams with very bursty emission.
- SGT predicts a log-normal distribution of intensities when averaged, power-law at high time resolution
- Complicated for coronal work by large sources and multi-path propagation

2010 Nov 11

(also 2010 Nov 10, 2011 Jan 21, 22)

Normal TBW spectrum

Cluster of Type IIIs

TBW spectra of Type IIIs

TBW spectra

Type IIIs with frequency structure

TBW spectra

Science with LWA-1 TBW data

- TBW data provide snapshot spectra (60 msec) every minute: basically "luck" as to which portion of a burst you get
- What they do is confirm spectral structure that isn't always "believable" in dynamic spectra
- Existing data already indicate interesting structure: need to interpret in terms of coronal inhomogeneity and electron beam properties.

The

Low-frequency RFI

The FM band in the TBW spectrum

ISES Solar Cycle Sunspot Number Progression Observed data through Apr 2011

Updated 2011 May 3

NOAA/SWPC Boulder,CO USA