Simulations for the Long Wavelength Array

Masaya kuniyoshi (UNM), Sanjay Bhatnagar (NRAO), Greg Taylor (UNM)
(The LWA Project collaboration)

Outline

1. Long Wavelength Array
2. LWA station beam

- Elliptical beam
- Asymmetric beam
- Pointing error

3. LWA imaging simulation
4.Summary

Long Wavelength Array (LWA)

LWA

Need for a simulator to analyze the LWA

Station Primary Beam

Asymmetric Station Beam

20 MHz
Asymmetric rate

$\theta \quad\left[{ }^{\circ}\right]$ (angle form zenith)

The left graph shows the longitudinal asymmetry of a station beam as a function of elevation at $20 \mathrm{MHz}, 50 \mathrm{MHz}$ and 80 MHz . A transverse direction of the beam is always symmetric. A station beam becomes asymmetric as the elevation decreases. The asymmetric effect becomes stronger as the observing frequency becomes lower.

Dsin θ

As the angle θ goes from 0 to $\pi / 2$, the value of $\cos \theta$ (differentiation of $\sin \theta$) gets smaller. As a result, the beam becomes asymmetric. This effect increases as the frequency decreases.

Sensitivity (example1)

Relative sensitivity

Elevation (degree)
$\square 20 \mathrm{MHz} \square 50 \mathrm{MHz} \square 80 \mathrm{MHz}$
Above shows the simulation results when the LWA EIk station beam (latitude32.9) tracks the CygA position (Dec 40.7°).

Sensitivity (example2)

Hour angle (degree)

Relative sensitivity

Elevation (degree)

Above shows the simulation results when the LWA EIk station beam (latitude32.9) tracks Dec 80° position.

Elk station beam at 20 MHz

I m coordinate (-100d to +100 d)

AZEL Longitude

Ground coordinate

Above shows the simulation results when the LWA Elk station beam (latitude32.9 ${ }^{\circ}$) tracks the CygA position (Dec 40.7°).

Elk station beam at 50 MHz

AZEL Longitude

I m coordinate (-90d to +90 d)

Ground coordinate

Above shows the simulation results when the LWA Elk station beam (latitude32.9 ${ }^{\circ}$) tracks Dec 0° position.

Elk station beam at 80 MHz

AZEL Longitude
I m coordinate
Ground coordinate (-180d to +180 d)

Above shows the simulation results when the LWA Elk station beam (latitude32.9 ${ }^{\circ}$) tracks Dec 80° position.

Pointing error

$\sqrt{B B P}$ causes pointing error

Correction by adding $\exp (i \alpha)$

The left shows a pointing error in a station beam. The pointing errors depend on the observing frequency and elevation. The right is the beam after the correction. $E_{k}(\theta, \phi)=\sum_{j=1}^{256} \Delta v \exp \left(i s_{j} v_{k}+i \alpha_{k}\right)$ Pointing error (degree)

Elevation (degree)
$\square 20 \mathrm{MHz} \square 50 \mathrm{MHz} \square 80 \mathrm{MHz}$

Big Blade antenna reception pattern

Side lobe at 50 MHz

El 32.3°

Relative sensitivity

Elevation (degree)

El 37.4°

UV coverage and PSF

Dec 32.9 degrees $\left[-38^{\circ}:+38^{\circ}\right.$]

LWA image at 20 MHz (preliminary)

(S.Bhatnagar \& M.Kuniyoshi)

Simulation model
(Jy/pixel)

Std Dev	RMS	Mean
5.974e-05	$5.974 \mathrm{e}-05$	$3.694 \mathrm{e}-07$
Median	Min	Max
0.00	$7.868 \mathrm{e}-05$	0.01981

LWA image at 20 MHz

(Jy/beam)		
Std Dev	RMS	Mean
0.0005373	0.0005528	0.0001299
Median	Min	Max
0.0001221	-0.0007	0.02770

Std Dev RMS Mean
0.00053730 .00055280 .0001299

Median Min Max
$0.0001221-0.00071810 .02770$

Circular Beam by changing the effective area in a station

ת

"

3
Houri 10deg

 Hour 40deg

midemex
Hour 0deg
I.WA
observing elevation

Summary

Station beam

-Pointing error becomes larger with decreasing observing frequency and elevation.
-Sensitivity changes with observing elevation due to the primary beam of the dipole in the station.

Now

We are in the process of creating more appropriate images (images from VLSS + 408MHz all sky maps + adding confusion noise) with CASA.

Thank you

