Murchison Widefield Array Survey Imaging

Steve Ord, Lincoln Greenhill, Randall Wayth, Daniel Mitchell

Harvard-Smithsonian Center for Astrophysics

Outline

MWA Imaging Pipeline & Formats Survey Strategies and Storage

Sunday, August 10, 2008

Pipeline

- Removes the effects of imaging, ionosphere, and the instrument. But is not the final data-product
 - Input map in instrumental co-ordinate frame high degree of instrumental polarisation
 - Distorted by the ionosphere
 - Distorted by wide-field effects

Has to operate in real-time producing an image every 8 seconds

Measured polarisation is due to the projection of the instrument dipoles onto the sky

We remove this by constructing the inverse projection for each pixel.

Sunday, August 10, 2008

Residual linear polarisation - due to uncorrected instrumental polarisation

-0.4

-0.3

-0.2

The correction is performed in the image plane - so can remove all of the projected instrumental polarisation

But only the average instrumental leakage

Right Ascension (deg)

0

0.1

0.2

0.3

-0.1

Resampling

We are removing the wide-field and the ionospheric effects by resampling the measured sky distribution onto a regular grid in sky coordinates.

Imaging snapshots from an instantaneously co-planar array. Which allows us to remove wide-field effects via a non-linear coordinate transformation in the image plane.

We are characterizing the ionospheric distortion during calibration. But removing the effect during the resampling.

Resampling

Requires a resampling scheme that introduces as few artifacts as possible.

We are currently using a redistribution algorithm that calculates the overlap of the input pixels with an output storage projection

Very computationally intensive: requires multiple 2D polygon overlap calculations for every pixel. Currently uses more FLOPS than any other part of the RTS

Input test image regridded into the storage porjection (HPX)

Starlink GAIA::Skycat GaiaTempCubeSection1.sdf
talk_0.fits(,,1) () 8:30:04.394 -26:37:13.90 J2000

The Storage Projection

Hierarchical, equal area, isolatitude, pixelisation

Divides the sphere into 12 facets

Each facet subdivided in NxN pixels

All equal sky area

Pixel Ordering

Original HEALPix ordering is excellent for spherical harmonic analysis or nearest neighbour calculations but terrible for imaging.

Storage format of RTS & Survey is an ordered list of HEALPix pixels, indexed by their pixel number.

HPX Imaging Pixelisation

Re-orders the pixels in a form suitable for imaging

Very easy to reorder the pixels - no resampling required

Although the coordinate system is rotated by 45 degrees

Sunday, August 10, 2008

Data Product Problems?

- The Survey is very wide band (80->300 MHz)
- The data product places constraints on the Survey storage strategy -HEALPix has a limited set of resolutions.
- In order to keep the pixel scale the same throughout the data-set we would have to massively oversample the sky at low frequencies.
- An alternative is to introduce BANDS into the Survey concept.
- 3 different pixel resolutions associated with 3 different HEALPix scales and 3 different Survey pointing layouts.

MWA SURVEY

Band 1 84 pointings. Frequency of 96 MHz 1 x 32 MHz band. NSIDE 1024

Imaging the full beam.

60 percent overlap between adjacent beams

Assuming 16 second slew times and 32 second integration times

Total Survey time in seconds:

BAND 1 == 4032 (67 min) BAND 2 == 30720 (8.5 hours) BAND 3 == 110272 (1.2 days) Band 3 574 pointings. Frequency of 247 MHz 4 x 32 MHz band. NSIDE 4096

XXXXXXXXXXXXX

Table 1: Survey Storage Requirements

BAND	NSIDE	Number of pixels	Number of pixels	Resolution	Storage
		in all sky	in Survey Area		per channel
1	1024	12,582,912	9,437,194	206"	240 MB
2	2048	$50,\!331,\!648$	$37,\!748,\!736$	103"	960 MB
3	4096	$201,326,\ 592$	$150,\!994,\!944$	51.5"	3.8 GB
-	8192	$805,\!601,\!280$	$604,\!200,\!960$	25.75"	$15 \mathrm{GB}$
	30 MHz	Number of	Storage	Survey	
	bands	Channels	All Sky	Area Only	
1	1	768	180 GB	$135 \mathrm{GB}$	
2	3	2304	2.160 TB	1.6 TB	
3	4	3072	11.4 TB	8.5 TB	

Summary

Removing instrumental polarisation via application of inverse feed transfer matrix.

Wide field effects & lonosphere removed by resampling in the image frame.

Storage frame is the HEALPix all sky pixelisation.

Imaging provided in the HPX projection.