

Project Update: Long Wavelength Array

Ylva Pihlström (UNM)

The full scale LWA

- 10-88 MHz optimal tuning range
- Baselines up to 400 km
 - Resolution [8,2]" at [20,80] MHz
- >50 stations giving mJy-level sensitivity
 - Each station is an array of dipoles in a 100m diameter aperture (FoV [8,2]°)

LWA project status

2006 2007	Initial funding Funding distributed Kickoff meeting System Requirements Review
2008-2012	LWA-1 Preliminary Design Review Critical Design Review Initial construction
2012-2016	LWIA (16 stations over 200 km) LWA core Full LWA (w/long baselines)

Antennas

- Antenna designed by NRL
- Burns Industries to generate three prototypes, while exploring such issues as:
 - Mechanical stability, particularly under wind loading,
 - Mechanical and electrical linkage to ground plane,
 - Incorporation of environmental container for front end electronics.
- At least one prototype will be fielded during September.

URSI General Assembly

8/13/08

Analog receiver

- ARX designed by UNM, has reconfigurable filter options due to variable RFI conditions.
- Includes a 98 MHz FM notch filter.
- Brass board for RX testing is ready:
 - Reconfigurable filter
 - Bias-T for FEE
 - Gain control

URSI General Assembly

8/13/08

First 4 sites selected:

- Biological and archeological survey show that LW, NA, HS, HM, TP and MA sites are 'clean'
- Agreements with ranchers reached, lease application submitted.

- Considerations
 - RFI levels

Site selection

- Fiber and power access
- Accessibility, configuration
- State land, biological and archeological review

Data communications

- MC station 0.5 Mbps two way traffic (4 beams of 8 MHz each)
- Station beams must be transmitted to correlator: 5.6 Gbps for full RF, 576 Mbps for 8 MHz (one way traffic)
- Options:
 - Fiber preferred but commercial fiber expensive \$25k/station/yr
 - Sneakernet and phone line MCS possible option

Correlation

Stations	1	3	16	53
Record rate (Mb/s/ant)*	0	576	576	576
Raw Data Rate (TB/day)	0	19	100	330
Correlator (TFLOPS)	0.0	0.05	2	23
Archive Rate (GB/day)	0	4	150	1700

*Assuming 8 MHz beams

Interferometer test

- At our demonstrator array site, tests to characterize antenna pattern
- 20 kHz channel

URSI General Assembly

RFI environment

• Ongoing RFI testing, have surveyed 8 sites for strong RFI peaks (rx linearity requirements) between 1-1000 MHz.

• FFT spectrometer system currently being defined, to perform deeper integrations at selected candidate sites for weak in-band RFI (to get within a factor of two of ITU defined levels).

RFI candidate sites

Site: HM, Date Observed: 2008-03-28, Time: 13:47:48 - 15:58:07 (UT

URSI General Assembly

Science with the full LWA

- lonospheric physics, and space weather •
- Plasma astrophysics •
- Acceleration of relativistic particles •
- Cosmic evolution and the high-z Universe
- Exploration and discovery • (including transients)

8/13/08

PARTICLE ACCELERATION

