Cosmic Ray Detection with the LWA

- What the LWA can add:
 - Currently, not ideal coverage, BUT
 - The most densely packed radio air shower array
 - =>best tests of modeling of $E(r,\theta)$
 - Cf: LOPES-30 (inverted vee) / CODALEMA (16 Rx) / RASTA (36, proposed, South Pole)
 - Catches:
 - No dedicated trigger
 - Unique combination of an astronomical+astroparticle mission!

Swordy Plot

Cosmic Ray Spectra of Various Experiments

CR energy spectrum x E³/>100 PeV

Cosmic Ray Spectra (E³J) of Various Experiments

Science

- Transition from Galactic to extragalactic CR source at 'knee'
- Correlation of CR to SNR (diffuse)
 - Energy resolution limited by modeling uncertainties in RF power, however, should be able to determine slope of CR spectrum

Techniques

- LOPES (40-80 MHz, $\sigma_{\theta} \sim 1.5^{\circ}$), CODALEMA
- MIDAS microwave bremstrahlung
 - Typically, f>1 GHz
- CRAYDAR forward scattering of CW through shower 'plasma' (prototype in Longridge, UT)
 - Requires ~20 kW transmitter ~ 50 km away
 - (Obviously impossible in this case)
- All require an event trigger
 - Either an RF-only trigger, OR
 - Supplement the LWA array with several ground scintillators; requiring a coincidence can probably lower energy threshold by ~2

Geosynchroton mechanism

- 1) Developing shower in atmosphere generates
- ~10% e-/e+ charge excess
- 2) Geosynchrotron radiation give signal with wavelength weighted to (macroscopic) charge separation scale

LOPES-36 in KASCADE

Signal Time Profile

[1] Event1073867291-10101

Solar Flare interferogram (~5° resolution)

CODALEMA

- 7000 m² collection area
- (144 log-periodics, filtered to 40-70 MHz)
- 4-fold coincidence: 0.7 evt/10 minutes
- Good events: 0.3 evt/day, 2.5° resolution
- Threshold~50 PeV (PeV 10¹⁵ eV)
- Calibration (claimed) on solar flares

Current simulations

- Agreement of REAS3 at ~15% level for vertical showers
- Agreement for highly inclined showers (>50°) somewhat worse.
 - Dense packing of LWA can be very useful in this case.

2008: The MGMR model

- Kahn & Lerche: parameterized air shower model
- macroscopic description in the time-domain
 - relates pulse features to longitudinal shower evolution
 - time-derivative of air shower evolution=>bipolar pulses

REAS3: particle-level calculation

Signal Strength (cf: bkgnd=thermal~10 uV, + galaxy)

Summary

- With existing array, LWA is competitive with other existing installations
- But need an external trigger line.
 - Minimal price: 250K personnel to rework trigger (JPL)
 - +25K coincidence hardware + computing
 - If add scintillators:
 - 50K for scintillators + photomultiplier tubes for readout + cables
- Full LWA would be a world-class instrument that would map geosynchrotron radio signal with unprecedented precision.